Skip to contents

Quality control metrics

Usage

metrics(object, ...)

metricsPerSample(object, ...)

# S4 method for SingleCellExperiment
metrics(object)

# S4 method for SingleCellExperiment
metricsPerSample(object, fun = c("mean", "median", "sum"))

Arguments

object

Object.

fun

function.

...

Additional arguments.

Value

data.frame

Functions

  • metrics(SingleCellExperiment): Cell-level metrics.

  • metricsPerSample(SingleCellExperiment): Sample-level metrics.

Note

Updated 2022-03-02.

Author

Michael Steinbaugh, Rory Kirchner

Examples

data(SingleCellExperiment_splatter, package = "AcidTest")

## SingleCellExperiment ====
object <- SingleCellExperiment_splatter
object <- AcidExperiment::calculateMetrics(object)
#> → Calculating 400 sample metrics.
#>  99 coding features detected.
#>  0 mitochondrial features detected.
x <- metrics(object)
print(x)
#> DataFrame with 400 rows and 9 columns
#>         sampleId    nCount  nFeature   nCoding     nMito log10FeaturesPerCount
#>         <factor> <integer> <integer> <integer> <integer>             <numeric>
#> cell001  sample3     68372        96     67542        NA              0.409994
#> cell002  sample3     81627       100     80709        NA              0.407180
#> cell003  sample4     80480       100     79333        NA              0.407690
#> cell004  sample1     55425        99     54891        NA              0.420691
#> cell005  sample2     38535        97     37910        NA              0.433239
#> ...          ...       ...       ...       ...       ...                   ...
#> cell396  sample3     73967        99     73085        NA              0.409862
#> cell397  sample4     48600        97     47905        NA              0.423923
#> cell398  sample3     54041       100     53276        NA              0.422590
#> cell399  sample3     69971        99     69183        NA              0.411903
#> cell400  sample2     48907        99     48150        NA              0.425566
#>         mitoRatio sampleName interestingGroups
#>         <numeric>   <factor>          <factor>
#> cell001        NA    sample3           sample3
#> cell002        NA    sample3           sample3
#> cell003        NA    sample4           sample4
#> cell004        NA    sample1           sample1
#> cell005        NA    sample2           sample2
#> ...           ...        ...               ...
#> cell396        NA    sample3           sample3
#> cell397        NA    sample4           sample4
#> cell398        NA    sample3           sample3
#> cell399        NA    sample3           sample3
#> cell400        NA    sample2           sample2
x <- metricsPerSample(object, fun = "mean")
#> → Calculating mean per sample.
print(x)
#> DataFrame with 4 rows and 8 columns
#>         sampleName interestingGroups    nCount  nFeature   nCoding     nMito
#>           <factor>          <factor> <numeric> <numeric> <numeric> <numeric>
#> sample3    sample3           sample3   59947.3   98.2479   59157.5        NA
#> sample4    sample4           sample4   62774.9   98.3636   61911.8        NA
#> sample1    sample1           sample1   61158.4   98.3158   60284.0        NA
#> sample2    sample2           sample2   60788.5   98.4062   59964.3        NA
#>         log10FeaturesPerCount mitoRatio
#>                     <numeric> <numeric>
#> sample3              0.417950        NA
#> sample4              0.416312        NA
#> sample1              0.417373        NA
#> sample2              0.417641        NA