Run a quick pairwise contrast using lfcShrink with apeglm
Source:R/AllGenerics.R
, R/apeglmResults-methods.R
apeglmResults.Rd
Wrapper function that helps set up DESeq2::lfcShrink()
to shrink LFC values
for a pairwise contrast via apeglm, without having to manually relevel factor
reference levels to use the required coef
argument.
Usage
apeglmResults(object, ...)
# S4 method for DESeqDataSet
apeglmResults(object, contrast, res, ...)
Arguments
- object
Object.
- ...
Additional arguments.
- contrast
character(3)
. Pairwise contrast vector:factor
: Grouping factor. Corresponds to column name incolData()
.numerator
: Numerator samples.denominator
: Denominator samples.
Numerator and denominator values correspond to grouping factor column. See
results()
for details. Note that we're intentionally being more strict about the input format here.- res
DESeqResults
. Results containing unshrunken LFC values, generated withresults()
.
Details
Dynamically sets reference factor levels, as recommended by DESeq2 vignette.
Matches contrast
input internally to corresponding coef
corresponding
to values in resultsNames()
.
Runs nbinomWaldTest()
via
DESeq()
, followed by lfcShrink()
.
See also
"Extended section on shrinkage estimators" section of DESeq2 vignette, which explains how to manually define
coef
argument which can be used with apeglmDESeq2::lfcShrink()
.
Examples
## DESeqDataSet ====
if (requireNamespace("apeglm", quietly = TRUE)) {
dds <- DESeq2::makeExampleDESeqDataSet(n = 1000L, m = 12L)
dds$condition <- factor(rep(LETTERS[seq_len(4L)], each = 3L))
dds <- DESeq2::DESeq(dds)
resultsNames(dds)
## Contrast C vs. B.
contrast <- c(factor = "condition", numerator = "C", denominator = "B")
## Unshrunken DESeqResults.
res <- DESeq2::results(dds, contrast = contrast)
class(res)
lfcShrinkType(res)
## Shrunken DESeqResults, using apeglm via `lfcShrink()`.
shrink <- apeglmResults(
object = dds,
contrast = contrast,
res = res
)
class(shrink)
lfcShrinkType(shrink)
}
#> estimating size factors
#> estimating dispersions
#> gene-wise dispersion estimates
#> mean-dispersion relationship
#> final dispersion estimates
#> fitting model and testing
#> design: ~condition
#> using pre-existing size factors
#> estimating dispersions
#> gene-wise dispersion estimates: 6 workers
#> mean-dispersion relationship
#> final dispersion estimates, fitting model and testing: 6 workers
#> contrast: condition_C_vs_B
#> coef: 3
#> [1] "apeglm"