Class containing parameterized ranked gene lists.
Usage
RankedList(object, ...)
# S4 method for DESeqAnalysis
RankedList(
object,
keyType = c("geneName", "ensemblGeneId", "ncbiGeneId"),
value = c("stat", "log2FoldChange"),
proteinCodingOnly = FALSE
)
# S4 method for DESeqResults
RankedList(
object,
rowRanges,
keyType = c("geneName", "ensemblGeneId", "ncbiGeneId"),
value = c("stat", "log2FoldChange"),
proteinCodingOnly = FALSE
)
# S4 method for FgseaList
RankedList(object)
Arguments
- object
Object.
- ...
Additional arguments.
- keyType
`character(1). Gene identifier format:
"geneName"
: Gene names (a.k.a. symbols; e.g."TP53"
)."ensemblGeneId
: Ensembl gene identifiers (e.g."ENSG00000000003"
)."ncbiGeneId"
: NCBI (Entrez) gene identifiers (e.g.7157
).
- value
character(1)
. Value type to use for GSEA ranked list.Currently supported:
stat
: Wald test statistic. This column is returned byresults()
but is removed inDESeq2::lfcShrink()
return, currently.log2FoldChange
: Shrunken log2 fold change. Note that this option requiresDESeq2::lfcShrink()
return to be slotted.padj
: Adjusted P value. This don't provide directional ranks, but is offered as a legacy option. Not generally recommended.
- proteinCodingOnly
logical(1)
. Restrict to protein coding genes only.- rowRanges
GenomicRanges
orGenomicRangesList
. Genomic ranges (e.g. genome annotations). Metadata describing the assay rows.
Gene symbol multi-mapping
Multiple gene IDs can map to a gene symbol (e.g. Homo sapiens HGNC names).
In this event, we're averaging the values using mean()
internally.
Examples
data(deseq, package = "DESeqAnalysis")
data(fgsea)
## DESeqAnalysis ====
object <- deseq
rl <- RankedList(object)
print(rl)
#> RankedList of length 2
#> names(2): condition_B_vs_A treatment_D_vs_C
## FgseaList ====
object <- fgsea
rl <- RankedList(object)
print(rl)
#> RankedList of length 2
#> names(2): condition_B_vs_A treatment_D_vs_C