Plot differentially expressed gene principal component analysis
Source:R/AllGenerics.R
, R/plotDegPca-methods.R
plotDegPca.Rd
This function is an extension of plotPCA()
that is optimized for automatic
handling of differentially expressed genes, rather than requiring manual
input of a gene vector or subset object.
Usage
plotDegPca(object, ...)
# S4 method for DESeqAnalysis
plotDegPca(
object,
i,
contrastSamples = FALSE,
alphaThreshold = NULL,
baseMeanThreshold = NULL,
lfcThreshold = NULL,
...
)
# S4 method for DESeqResults
plotDegPca(
object,
DESeqTransform,
direction = c("both", "up", "down"),
alphaThreshold = NULL,
baseMeanThreshold = NULL,
lfcThreshold = NULL,
...
)
Arguments
- object
Object.
- i
Indices specifying elements to extract or replace. Indices are
numeric
orcharacter
vectors, empty (missing
), orNULL
.For more information:
- contrastSamples
logical(1)
. Only include the samples used to define the contrast passed toDESeq2::results()
. This setting will break for complex DESeq2 contrasts (e.g. interaction effect).- alphaThreshold
numeric(1)
orNULL
. Adjusted P value ("alpha") cutoff. If leftNULL
, will use the cutoff defined in the object.- baseMeanThreshold
numeric(1)
orNULL
. Base mean (i.e. average expression across all samples) threshold. If leftNULL
, will use the cutoff defined in the object. Applies in general to DESeq2 RNA-seq differential expression output.- lfcThreshold
numeric(1)
orNULL
. Log (base 2) fold change ratio cutoff threshold. If leftNULL
, will use the cutoff defined in the object.- ...
Additional arguments.
- DESeqTransform
DESeqTransform
.- direction
character(1)
. Include"both"
,"up"
, or"down"
directions.
Details
To adjust the annotation columns, modify the colData()
of the counts
argument, which must contain/extend a SummarizedExperiment
.
Examples
data(deseq)
## DESeqAnalysis ====
plotDegPca(deseq, i = 1L)