The base mean is the mean of normalized counts of all samples, normalizing for sequencing depth.
Usage
plotBaseMean(object, ...)
# S4 method for DESeqAnalysis
plotBaseMean(
object,
nonzero = TRUE,
trans = c("log10", "log2", "identity"),
summary = TRUE,
labels = list(title = "Base mean distribution", subtitle = NULL)
)
# S4 method for DESeqDataSet
plotBaseMean(
object,
nonzero = TRUE,
trans = c("log10", "log2", "identity"),
summary = TRUE,
labels = list(title = "Base mean distribution", subtitle = NULL)
)
# S4 method for DESeqResults
plotBaseMean(
object,
nonzero = TRUE,
trans = c("log10", "log2", "identity"),
summary = TRUE,
labels = list(title = "Base mean distribution", subtitle = NULL)
)
Arguments
- object
Object.
- nonzero
logical(1)
. Remove zero-count features (genes).- trans
character(1)
. Name of the axis scale transformation to apply.For more information:
- summary
logical(1)
. Include distribution summary statistics as lines on the plot.- labels
list
. ggplot2 labels. Seeggplot2::labs()
for details.- ...
Additional arguments.
Functions
plotBaseMean(DESeqAnalysis)
: Passes toDESeqDataSet
method.plotBaseMean(DESeqDataSet)
: Generates row means of normalized counts. This value corresponds to thebaseMean
column ofDESeqResults
.plotBaseMean(DESeqResults)
: UsesbaseMean
column of results.
Examples
data(deseq)
## DESeqAnalysis ====
plotBaseMean(deseq)
#> ℹ Removing 1 zero-count feature.
#> ℹ Summary prior to transformation:
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 0.08 6.46 19.51 42.53 44.43 681.66
#> → Applying 'log10(x + 1)' transformation.
#> ℹ Summary after transformation:
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 0.03 0.87 1.31 1.28 1.66 2.83