Class containing all elements generated during differential expression
analysis with DESeq2. This class is essentially a list
with validity checks
to ensure DESeqTransform
and DESeqResults
correspond to the
DESeqDataSet
.
Arguments
- data
DESeqDataSet
.- transform
DESeqTransform
.DESeq2::varianceStabilizingTransformation()
recommended by default.- results
list
or singleDESeqResults
. One or more unshrunkenDESeqResults
. Assign theDESeq2::results()
return here.- lfcShrink
list
, singleDESeqResults
, orNULL
. Optional. One or more shrunkenDESeqResults
. Assign theDESeq2::lfcShrink()
return here.
Examples
suppressPackageStartupMessages({
library(S4Vectors)
library(SummarizedExperiment)
})
data <- DESeq2::makeExampleDESeqDataSet()
rowRanges <- AcidGenomes::emptyRanges(names = rownames(data))
mcols(rowRanges)[["geneId"]] <- paste0("id", seq_len(length(rowRanges)))
mcols(rowRanges)[["geneName"]] <- paste0("name", seq_len(length(rowRanges)))
rowRanges(data) <- rowRanges
data <- DESeq2::DESeq(data)
#> estimating size factors
#> estimating dispersions
#> gene-wise dispersion estimates
#> mean-dispersion relationship
#> final dispersion estimates
#> fitting model and testing
class(data)
#> [1] "DESeqDataSet"
#> attr(,"package")
#> [1] "DESeq2"
transform <- DESeq2::varianceStabilizingTransformation(data)
class(transform)
#> [1] "DESeqTransform"
#> attr(,"package")
#> [1] "DESeq2"
resultsNames(data)
#> [1] "Intercept" "condition_B_vs_A"
name <- resultsNames(data)[[2L]]
results <- DESeq2::results(data, name = name)
class(results)
#> [1] "DESeqResults"
#> attr(,"package")
#> [1] "DESeq2"
lfcShrink <- DESeq2::lfcShrink(dds = data, res = results, coef = 2L)
#> using 'apeglm' for LFC shrinkage. If used in published research, please cite:
#> Zhu, A., Ibrahim, J.G., Love, M.I. (2018) Heavy-tailed prior distributions for
#> sequence count data: removing the noise and preserving large differences.
#> Bioinformatics. https://doi.org/10.1093/bioinformatics/bty895
results <- list(results)
names(results) <- name
lfcShrink <- list(lfcShrink)
names(lfcShrink) <- name
object <- DESeqAnalysis(
data = data,
transform = transform,
results = results,
lfcShrink = lfcShrink
)
print(object)
#> DESeqAnalysis 0.7.1; DESeq2 1.42.1
#> data:
#> dim: 1000 12
#> metadata(1): version
#> assays(4): counts mu H cooks
#> rownames(1000): gene1 gene2 ... gene999 gene1000
#> rowData names(24): geneId geneName ... deviance maxCooks
#> colnames(12): sample1 sample2 ... sample11 sample12
#> colData names(2): condition sizeFactor
#> transformType: varianceStabilizingTransformation
#> resultsNames: condition_B_vs_A
#> alphaThreshold: 0.1
#> lfcShrinkType: apeglm