Metadata that describes the samples.
Usage
sampleData(object, ...)
sampleData(object, ...) <- value
# S4 method for class 'SummarizedExperiment'
sampleData(
object,
clean = TRUE,
ignoreCols = c("^description$", "^genomeBuild$", "^qualityFormat$", "^samRef$")
)
# S4 method for class 'SummarizedExperiment,DFrame'
sampleData(object) <- value
# S4 method for class 'SummarizedExperiment'
sampleNames(object)Arguments
- object
Object.
- clean
logical(1). Only returnfactorcolumns. Useful when working with objects that contain quality control metrics incolData(). For example,bcbioRNASeqandDESeqDataSetobjects often contain additional columns that aren't informative sample metadata.- ignoreCols
characterorNULL. Only applies whenclean = TRUE. Additional factor columns defined incolDatato be ignored as sample-level metadata. Particularly useful forSingleCellExperimentobjects, where cell-to-sample mappings are defined using thesampleIdcolumn.- value
Value to assign.
- ...
Additional arguments.
Details
All columns defined in colData of the object must be named in strict
lower camel case, otherwise this function will intentionally error.
All supported S4 classes
Illegal colData:
interestingGroups: Generated automatically, based on the criteria slotted into the object usinginterestingGroups(). The function will error intentionally if this column is manually defined incolData().
Recommended colData:
sampleName: Human readable sample names used by basejump plotting functions in favor of object column names, which should be syntactically valid (but not always very readable). Seemake.names()for more information on syntactically valid names. Note that if this column is not defined in the object, it will be returned automatically bysampleData().
SummarizedExperiment
Required colData:
None.
Illegal colData:
sampleId: Redundant; already defined in the object column names.
Examples
data(RangedSummarizedExperiment, package = "AcidTest")
## SummarizedExperiment ====
object <- RangedSummarizedExperiment
sampleData(object)
#> DataFrame with 12 rows and 3 columns
#> condition sampleName interestingGroups
#> <factor> <factor> <factor>
#> sample01 A sample01 A
#> sample02 A sample02 A
#> sample03 A sample03 A
#> sample04 A sample04 A
#> sample05 A sample05 A
#> ... ... ... ...
#> sample08 B sample08 B
#> sample09 B sample09 B
#> sample10 B sample10 B
#> sample11 B sample11 B
#> sample12 B sample12 B
## Assignment support.
sampleData(object)[["batch"]] <- 1L
## `batch` column should be now defined.
sampleData(object)
#> DataFrame with 12 rows and 3 columns
#> condition sampleName interestingGroups
#> <factor> <factor> <factor>
#> sample01 A sample01 A
#> sample02 A sample02 A
#> sample03 A sample03 A
#> sample04 A sample04 A
#> sample05 A sample05 A
#> ... ... ... ...
#> sample08 B sample08 B
#> sample09 B sample09 B
#> sample10 B sample10 B
#> sample11 B sample11 B
#> sample12 B sample12 B