Skip to contents

Quality control metrics

Usage

metrics(object, ...)

# S4 method for SummarizedExperiment
metrics(object)

Arguments

object

Object.

...

Additional arguments.

Value

DFrame.

Details

metrics() takes data stored in colData() and consistently returns a DFrame with sampleName and interestingGroups columns, even when these columns are not defined in colData(). This is designed to integrate with plotting functions that use ggplot2 internally.

Column names are always returned formatted in strict lower camel case.

This function will error intentionally if no numeric columns are defined in colData().

Functions

  • metrics(SummarizedExperiment): Sample-level metrics.

Note

Updated 2022-05-04.

Author

Michael Steinbaugh, Rory Kirchner

Examples

data(RangedSummarizedExperiment, package = "AcidTest")

## SummarizedExperiment ====
object <- RangedSummarizedExperiment
object <- calculateMetrics(object)
#> → Calculating 12 sample metrics.
#>  497 coding features detected.
#>  0 mitochondrial features detected.
x <- metrics(object)
print(x)
#> DataFrame with 12 rows and 9 columns
#>          condition    nCount  nFeature   nCoding     nMito
#>           <factor> <integer> <integer> <integer> <integer>
#> sample01         A     19671       457     19617        NA
#> sample02         A     19652       457     19519        NA
#> sample03         A     19565       453     19505        NA
#> sample04         A     20003       449     19919        NA
#> sample05         A     20034       452     19936        NA
#> ...            ...       ...       ...       ...       ...
#> sample08         B     24248       451     24089        NA
#> sample09         B     23967       437     23817        NA
#> sample10         B     24916       457     24814        NA
#> sample11         B     24074       454     23854        NA
#> sample12         B     24626       447     24467        NA
#>          log10FeaturesPerCount mitoRatio sampleName interestingGroups
#>                      <numeric> <numeric>   <factor>          <factor>
#> sample01              0.619475        NA   sample01                 A
#> sample02              0.619535        NA   sample02                 A
#> sample03              0.618924        NA   sample03                 A
#> sample04              0.616644        NA   sample04                 A
#> sample05              0.617220        NA   sample05                 A
#> ...                        ...       ...        ...               ...
#> sample08              0.605330        NA   sample08                 B
#> sample09              0.602903        NA   sample09                 B
#> sample10              0.605011        NA   sample10                 B
#> sample11              0.606419        NA   sample11                 B
#> sample12              0.603523        NA   sample12                 B