Unpivot column data from wide format to long format.
Usage
melt(object, ...)
# S4 method for Matrix
melt(
object,
colnames = c("rowname", "colname", "value"),
min = -Inf,
minMethod = c("absolute", "perRow"),
trans = c("identity", "log2", "log10")
)
# S4 method for SummarizedExperiment
melt(
object,
assay = 1L,
min = -Inf,
minMethod = c("absolute", "perRow"),
trans = c("identity", "log2", "log10")
)
Arguments
- object
Object.
- colnames
character(3)
. Column name mappings for melted data frame return.- min
numeric(1)
orNULL
. Minimum count threshold to apply. Filters using "greater than or equal to" logic internally. Note that this threshold gets applied prior to logarithmic transformation, whentrans
argument applies. Use-Inf
orNULL
to disable.- minMethod
character(1)
. Only applies whenmin
argument is numeric. Usesmatch.arg()
.absolute
: Applies hard cutoff tocounts
column after the melt operation. This applies to all counts, not per feature.perRow
: Applies cutoff per row (i.e. gene). Internally,rowSums()
values are checked against this cutoff threshold prior to the melt operation.
- trans
character(1)
. Apply a log transformation (e.g.log2(x + 1L)
) to the count matrix prior to melting, if desired. Use"identity"
to return unmodified (default).- assay
vector(1)
. Assay name or index position.- ...
Additional arguments.
See also
https://seananderson.ca/2013/10/19/reshape/
reshape2::melt
(deprecated).Python
pandas.melt
.
Examples
data(RangedSummarizedExperiment, package = "AcidTest")
## SummarizedExperiment ====
object <- RangedSummarizedExperiment
dim(object)
#> [1] 500 12
x <- melt(object)
nrow(x)
#> [1] 6000
print(x)
#> DataFrame with 6000 rows and 6 columns
#> rowname colname value condition sampleName interestingGroups
#> <Rle> <Rle> <Rle> <Rle> <Rle> <Rle>
#> 1 gene001 sample01 58 A sample01 A
#> 2 gene002 sample01 14 A sample01 A
#> 3 gene003 sample01 49 A sample01 A
#> 4 gene004 sample01 5 A sample01 A
#> 5 gene005 sample01 54 A sample01 A
#> ... ... ... ... ... ... ...
#> 5996 gene496 sample12 80 B sample12 B
#> 5997 gene497 sample12 0 B sample12 B
#> 5998 gene498 sample12 2 B sample12 B
#> 5999 gene499 sample12 8 B sample12 B
#> 6000 gene500 sample12 64 B sample12 B