Skip to contents

Correlation

Usage

correlation(x, y, ...)

# S4 method for Matrix,Matrix
correlation(x, y, method = c("pearson", "kendall", "spearman"))

# S4 method for Matrix,missingOrNULL
correlation(x, y = NULL, method = c("pearson", "kendall", "spearman"))

# S4 method for SummarizedExperiment,SummarizedExperiment
correlation(x, y, i = 1L, method = c("pearson", "kendall", "spearman"))

# S4 method for SummarizedExperiment,missingOrNULL
correlation(
  x,
  y = NULL,
  i = 1L,
  j = NULL,
  method = c("pearson", "kendall", "spearman")
)

# S4 method for matrix,matrix
correlation(x, y, method = c("pearson", "kendall", "spearman"))

# S4 method for matrix,missingOrNULL
correlation(x, y = NULL, method = c("pearson", "kendall", "spearman"))

# S4 method for numeric,numeric
correlation(x, y, method = c("pearson", "kendall", "spearman"))

Arguments

x

Object.

y

Object.

method

character(1). Which correlation coefficient (or covariance) is to be computed. See stats::cor documentation for details.

i

integer(1) or character(1). For SummarizedExperiment, primary assay.

j

integer(1), character(1), or NULL. For SummarizedExperiment, optional secondary assay. If NULL, calculates correlation matrix only on the primary assay.

...

Additional arguments.

Value

numeric(1) or matrix.

Note

Updated 2021-06-04.

See also

Examples

data(correlation, package = "AcidTest")
list <- correlation

## vector ====
x <- list[["vector_x"]]
y <- list[["vector_y"]]

head(x)
#> [1]  2  0 13  4  0  0
head(y)
#> [1]  0.6764552 -1.4776467 12.2839279  5.6912999  0.6343433 -1.3237125

correlation(x = x, y = y)
#> → Calculating pearson correlation on 100 values.
#> [1] 0.9679586

## matrix ====
x <- list[["matrix_x"]]
y <- list[["matrix_y"]]

head(x)
#>      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
#> [1,]    2    6    5   11    2    5    1    6    6    12
#> [2,]    0    1    1    0    7    1    3   11    3    10
#> [3,]   13    8    5    2   11   20    3    0   11     0
#> [4,]    4   11    2    0    5    0    6    0    2     7
#> [5,]    0    6    7   12    4    8    0    1    2     8
#> [6,]    0    3    2    4    3    2    0    5    2     1
head(y)
#>            [,1]       [,2]      [,3]       [,4]      [,5]       [,6]       [,7]
#> [1,]  0.6764552  6.7416244 4.2135584 12.0503339  3.707114  4.8705682  2.7809390
#> [2,] -1.4776467 -0.2459721 2.0902830 -0.8709795  8.391184 -0.6895169  1.0254373
#> [3,] 12.2839279  8.7796431 6.8375315  0.6215681 12.572532 20.3227114  3.4789913
#> [4,]  5.6912999  9.9169030 3.8624108 -0.7437612  3.901034 -0.6705214  7.4041131
#> [5,]  0.6343433  4.4000908 7.8159738 13.1496279  4.170519  8.5612456 -0.1770829
#> [6,] -1.3237125  3.7288806 0.4820749  3.4867973  3.290924  0.4683960  1.9713020
#>            [,8]       [,9]      [,10]
#> [1,]  4.6695525  7.5618775 13.5023073
#> [2,] 10.1064177  2.4153431  8.5226743
#> [3,]  1.9143920 11.7381091  0.2995024
#> [4,]  1.7281752  3.8499412  6.8724791
#> [5,] -0.3568263  2.8111183  9.0378596
#> [6,]  4.8216451  0.2424011 -0.5963026

stats::cor(x)
#>              [,1]        [,2]        [,3]        [,4]        [,5]        [,6]
#>  [1,]  1.00000000  0.21949625  0.07673707 -0.23830635  0.56219887  0.67943447
#>  [2,]  0.21949625  1.00000000 -0.08216896 -0.26708240  0.14688956 -0.12196990
#>  [3,]  0.07673707 -0.08216896  1.00000000  0.67762067 -0.31897134  0.48293916
#>  [4,] -0.23830635 -0.26708240  0.67762067  1.00000000 -0.28132202  0.14167981
#>  [5,]  0.56219887  0.14688956 -0.31897134 -0.28132202  1.00000000  0.02092915
#>  [6,]  0.67943447 -0.12196990  0.48293916  0.14167981  0.02092915  1.00000000
#>  [7,] -0.14286756  0.58348668  0.05348282 -0.42961395 -0.36256807 -0.03802021
#>  [8,] -0.46637804 -0.17939287 -0.23504641 -0.17128379 -0.19686818 -0.40768671
#>  [9,]  0.44358958 -0.09919878  0.56591105  0.04540479 -0.19316915  0.75430968
#> [10,] -0.41321717 -0.13006618  0.47160156  0.41826854 -0.35612505 -0.30511159
#>              [,7]       [,8]        [,9]       [,10]
#>  [1,] -0.14286756 -0.4663780  0.44358958 -0.41321717
#>  [2,]  0.58348668 -0.1793929 -0.09919878 -0.13006618
#>  [3,]  0.05348282 -0.2350464  0.56591105  0.47160156
#>  [4,] -0.42961395 -0.1712838  0.04540479  0.41826854
#>  [5,] -0.36256807 -0.1968682 -0.19316915 -0.35612505
#>  [6,] -0.03802021 -0.4076867  0.75430968 -0.30511159
#>  [7,]  1.00000000  0.1779272  0.34940884  0.07851239
#>  [8,]  0.17792721  1.0000000 -0.17173085  0.43610035
#>  [9,]  0.34940884 -0.1717308  1.00000000  0.02120542
#> [10,]  0.07851239  0.4361004  0.02120542  1.00000000
correlation(x)
#> → Calculating "pearson" correlation matrix.
#>              [,1]        [,2]        [,3]        [,4]        [,5]        [,6]
#>  [1,]  1.00000000  0.21949625  0.07673707 -0.23830635  0.56219887  0.67943447
#>  [2,]  0.21949625  1.00000000 -0.08216896 -0.26708240  0.14688956 -0.12196990
#>  [3,]  0.07673707 -0.08216896  1.00000000  0.67762067 -0.31897134  0.48293916
#>  [4,] -0.23830635 -0.26708240  0.67762067  1.00000000 -0.28132202  0.14167981
#>  [5,]  0.56219887  0.14688956 -0.31897134 -0.28132202  1.00000000  0.02092915
#>  [6,]  0.67943447 -0.12196990  0.48293916  0.14167981  0.02092915  1.00000000
#>  [7,] -0.14286756  0.58348668  0.05348282 -0.42961395 -0.36256807 -0.03802021
#>  [8,] -0.46637804 -0.17939287 -0.23504641 -0.17128379 -0.19686818 -0.40768671
#>  [9,]  0.44358958 -0.09919878  0.56591105  0.04540479 -0.19316915  0.75430968
#> [10,] -0.41321717 -0.13006618  0.47160156  0.41826854 -0.35612505 -0.30511159
#>              [,7]       [,8]        [,9]       [,10]
#>  [1,] -0.14286756 -0.4663780  0.44358958 -0.41321717
#>  [2,]  0.58348668 -0.1793929 -0.09919878 -0.13006618
#>  [3,]  0.05348282 -0.2350464  0.56591105  0.47160156
#>  [4,] -0.42961395 -0.1712838  0.04540479  0.41826854
#>  [5,] -0.36256807 -0.1968682 -0.19316915 -0.35612505
#>  [6,] -0.03802021 -0.4076867  0.75430968 -0.30511159
#>  [7,]  1.00000000  0.1779272  0.34940884  0.07851239
#>  [8,]  0.17792721  1.0000000 -0.17173085  0.43610035
#>  [9,]  0.34940884 -0.1717308  1.00000000  0.02120542
#> [10,]  0.07851239  0.4361004  0.02120542  1.00000000

stats::cor(x = c(x), y = c(y))
#> [1] 0.9679586
correlation(x = x, y = y)
#> → Calculating pearson correlation on 100 values.
#> [1] 0.9679586

## SummarizedExperiment ====
x <- list[["SummarizedExperiment_x"]]
y <- list[["SummarizedExperiment_y"]]

correlation(x = x, i = 1L)
#> → Calculating "pearson" correlation matrix.
#>              [,1]        [,2]        [,3]        [,4]        [,5]        [,6]
#>  [1,]  1.00000000  0.21949625  0.07673707 -0.23830635  0.56219887  0.67943447
#>  [2,]  0.21949625  1.00000000 -0.08216896 -0.26708240  0.14688956 -0.12196990
#>  [3,]  0.07673707 -0.08216896  1.00000000  0.67762067 -0.31897134  0.48293916
#>  [4,] -0.23830635 -0.26708240  0.67762067  1.00000000 -0.28132202  0.14167981
#>  [5,]  0.56219887  0.14688956 -0.31897134 -0.28132202  1.00000000  0.02092915
#>  [6,]  0.67943447 -0.12196990  0.48293916  0.14167981  0.02092915  1.00000000
#>  [7,] -0.14286756  0.58348668  0.05348282 -0.42961395 -0.36256807 -0.03802021
#>  [8,] -0.46637804 -0.17939287 -0.23504641 -0.17128379 -0.19686818 -0.40768671
#>  [9,]  0.44358958 -0.09919878  0.56591105  0.04540479 -0.19316915  0.75430968
#> [10,] -0.41321717 -0.13006618  0.47160156  0.41826854 -0.35612505 -0.30511159
#>              [,7]       [,8]        [,9]       [,10]
#>  [1,] -0.14286756 -0.4663780  0.44358958 -0.41321717
#>  [2,]  0.58348668 -0.1793929 -0.09919878 -0.13006618
#>  [3,]  0.05348282 -0.2350464  0.56591105  0.47160156
#>  [4,] -0.42961395 -0.1712838  0.04540479  0.41826854
#>  [5,] -0.36256807 -0.1968682 -0.19316915 -0.35612505
#>  [6,] -0.03802021 -0.4076867  0.75430968 -0.30511159
#>  [7,]  1.00000000  0.1779272  0.34940884  0.07851239
#>  [8,]  0.17792721  1.0000000 -0.17173085  0.43610035
#>  [9,]  0.34940884 -0.1717308  1.00000000  0.02120542
#> [10,]  0.07851239  0.4361004  0.02120542  1.00000000
correlation(x = x, i = 1L, j = 2L)
#> → Calculating pearson correlation on 100 values.
#> [1] 0.9679586
correlation(x = x, y = y)
#> → Calculating pearson correlation on 100 values.
#> [1] 0.9679586